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1. Crossed Product Algebras

Definition 1.1. Let G be a group acting on an algebra R over C. The crossed product algebra is

R⋊C[G] = R⊗ C[G]

with multiplication given by
(r ⊗ g)(r′ ⊗ g′) = r(g · r′) ⊗ gg′1

Given N ∈ R− mod, g ∈ G, consider the new R− mod gN = N as a set with twisted action

r ◦ n = g−1(r) · n

Lemma 1.2. gN is simple ⇐⇒ N is simple.

Proof. G acts by automorphisms on R so M ⊂ N is a submodule ⇐⇒ gM ⊂g N is a submodule. ■

Thus G acts on the set of simple R−modules.

Definition 1.3. Given N a simple R− mod, the inertia subgroup of N is

IN = {g ∈ G| gN ∼= N}

For h ∈ IN , fix an isomorphism ϕh : N →h−1
N , then

ϕgϕh = αN (g, h)ϕgh

where αN (g, h) ∈ C× by Schur’s Lemma. Since ϕh is an intertwiner we have ϕhr = h(r)ϕh and this will
show that αN (g, h) ∈ H2(IN ,C×).

Definition 1.4 (Twisted Group Algebra). Given α ∈ H2(H,C×), let (CH)α−1 be the algebra with
underlying set CH with multiplication given by

cgch = α(g, h)−1cgh

Let Lµ be a simple (CIN )α−1
N

− mod. Then there is an action of of R⋊C[IN ] on N ⊗ Lµ given by

(r ⊗ h)(n⊗ l) = r · ϕh(n) ⊗ ch · l

(There’s no typo, we have C[IN ] instead of (CIN )α−1
N

because of double cancellation.)

1Equivalently, multiplication is given by concatenation using the commutation relation gr = g(r)g to move all the G

terms to the right.
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Section 1 Cailan Li Crossed Product Algebras

Theorem 1 (Clifford Theory)
Let N be a simple R− mod, and Lµ a simple (CIN )α−1

N
− mod. Let

RGN,µ = IndR⋊G
R⋊IN

(N ⊗ Lµ)

(a) RGN,µ is a simple R⋊G module.

(b) Every simple R⋊G module is obtained by this construction.

(c) RGN1,µ ∼= RGN2,γ ⇐⇒ N1, N2 in same G−orbit and Lµ ∼= Lγ.

Proof. (a) The key here is notice that the the decomposition of R−modules

IndR⋊G
R⋊IN

(N ⊗ Lµ) =
⊕

gi∈G/IN

(1 ⊗ gi)N ⊗ Lµ
g⋊g−1(r)=rg∼=

⊕
gi∈G/IN

giN ⊗ Lµ (1)

shows RGN,µ is a ss R−module as N is a simple R−module. Thus any R⋊G submodule M ′ ⊆ RGN,µ

must also be a ss R−module. ss modules are direct sums of their isotypic components and Eq. (1) shows
that all simple submodules of RGN,µ are of the form gN and thus we see that as R−modules

M ′ =
⊕

gi∈G/IN

giN ⊗ HomR(giN,M ′) =
⊕

gi∈G/IN

giN ⊗ HomR(giN,M ′ ∩ gi(N ⊗ Lµ))

G−submod==
⊕

gi∈G/IN

giN ⊗ HomR(giN, gi(M ′ ∩ (N ⊗ Lµ)) ) ∼=
⊕

gi∈G/IN

giN ⊗ HomR(N,M ′ ∩ (N ⊗ Lµ))

Since M ′ is a G−submodule, M ′ ∩ (N ⊗ Lµ) is a IN −submodule and thus we have the IN −submodule

HomR(N,M ′ ∩ (N ⊗ Lµ)) ⊂ HomR(N,N ⊗ Lµ) = Lµ

But Lµ is a simple IN module and thus we have equality and thus M ′ = RGN,µ as desired.
(b) Suppose M is a simple R ⋊ G module and let N be any simple R submodule of M . Notice that
M =

∑
g∈G

gN since the RHS is a R⋊G submodule of M . We can then divide the sum as

M =
⊕

gi∈G/IN

giL = IndR⋊G
R⋊IN

L where L =
∑

h∈IN

hN

L is a sum of isomorphic simple R−modules and thus is semisimple and thus is a direct sum of it’s
isotypic components so we have

L ∼= N ⊗ HomR(N,L)

One can then check that HomR(N,L) is a simple (IN )α−1
N

module.
(c) Given RGN1,µ = RGN2,γ since N1 is a R− submodule of the LHS it follows that N1 =g N2 for some
g ∈ G. It then follows that Lµ = HomR(N1, RG

N1,µ) ∼= HomR(gN2, RG
N2,γ)HomR(gN2,

g N2 ⊗ Lγ) =
Lγ . ■

Remark. If G acts trivially on R then R ⋊ C[G] = R ⊗ C[G] and gN = N ∀g ∈ G and so IN = G

and thus the above recovers the fact that all simple R ⊗ C[G] modules are of the form N ⊗ L where
N ∈ Irr(R), L ∈ Irr(G).

Lemma 1.5. Let e = (1/|G|)
∑
g∈G

g ∈ R⋊G.
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(a) We have a ring isomorphism

θ : RG ∼−→ e(R⋊G)e
s 7→ se

(b) We have an isomorphism of (R⋊G,RG) bimodules

ψ : R ∼−→ (R⋊G)e
r 7→ re

Proof. (a) Let r ∈ RG, then expanding the first e we have

er = 1
|G|

∑
g∈G

g ⋊ r = 1
|G|

∑
g∈G

g(r)g r∈RG

== 1
|G|

∑
g∈G

rg = re =⇒ ere = re (2)

And thus θ actually lands in e(R⋊G)e. Furthermore by Eq. (2), we see that for r, s ∈ RG, rese = rse

so θ is a ring homomorphism. If re = se, then since R ⋊G is a free R−module with basis G, we have
r = s. For surjectivity, like in Eq. (2) for rh ∈ R⋊G we have the computation

e(rh)e = 1
|G|

∑
g∈G

g ⋊ rhe = 1
|G|

∑
g∈G

g(r)ghe ge=e∀g∈G===

 1
|G|

∑
g∈G

g(r)

 e ∈ RGe

■

1.1. RG simples

Lemma 1.6. Let M,N be simple (CH)α−modules and eH = 1
|H|

∑
h∈H

h. Then

dim(eH(M ⊗N∗)) =

1 if M ∼= N

0 otherwise

Let N be a simple R−module. RG acts on N on the left by restriction while (CIN )αN acts on N on the
right by the isomorphisms ϕh : N ∼=h N . Recall ϕhr = h(r)ϕh and thus for r ∈ RG, these two actions
commute and we have a decomposition

N ∼=
⊕

ν∈ ̂(IN )αN

Nν ⊗ (Lν)∗ (3)

where Nν ∈ RG − mod and Lν ∈ C[IN ]αN − mod.

Theorem 2 (a) If Nν ̸= 0 then it’s a simple RG−module.

(b) Every simple RG−module is isomorphic to some Nν and they are pairwise nonisomorphic.

Proof. It suffices to show eRGN,µ ∼= Nν and then (a) follows from Lemma 2.2 while (b) follows from
Theorem 3 we know that all simple RG. First note

eRGN,µ := e(R⋊G) ⊗R⋊H (N ⊗ Lµ) eg=g== e⊗R⋊H (N ⊗ Lµ)
= eeH ⊗R⋊H (N ⊗ Lµ) = e⊗R⋊H eH(N ⊗ Lµ)

Using the decomposition in Eq. (3) and Lemma 1.6 the result follows. ■

Corollary 1.7. N |RG is semisimple.
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2. Idempotent functor

Let S be any k algebra and e ∈ S any idempotent and let Fe : S − mod → eSe − mod be defined as
Fe(V ) = eV .

Lemma 2.1. Fe is exact.

Proof. eV ∼= HomS(Se, V ). ■

Lemma 2.2. If V ∈ S − mod is irreducible, then Fe(V ) is zero or irreducible.

Proof. Let W ⊂ eV be a eSe submodule. First note that W = eSeW = eeSeW = eW . Then
V = SW = SeW since V is an irreducible S−module. Thus

eV = e(SeW ) = (eSe)W = W

Thus W has to be an irreducible eSe module if not zero. ■

Definition 2.3. Let V(e) be the largest S submodule of V contained in (1 − e)V .

Lemma 2.4. For V ∈ S − mod, the map πe : V → V/V(e) induces an isomorphism Fe(πe) : Fe(V ) →
Fe(V/V(e)).

Proof. Fe is exact and thus we have the exact sequence

0 → Fe(V(e)) → Fe(V ) → Fe(V/V(e)) → 0

But eV(e) ⊆ e(1 − e)V = 0. ■

Let Ge : eSe− mod → S − mod be defined as Ge(W ) = Se ⊗eSe W .

Lemma 2.5. Given W ∈ eSe− mod, we have Fe(Ge(W )) = e⊗eSe W ∼= W .

Proof.
Fe(Ge(W )) = e(Se⊗eSe) = eSe⊗eSe W = e⊗eSe W ∼= W

■

However Ge doesn’t always take simples to simples and thus we still don’t know if the map Fe : S−Irr →
eSe− Irr is surjective or not. However, consider

Definition 2.6. Let G∗
e : eSe− mod → S − mod be defined as G∗

e(W ) = Ge(W )/Ge(W )(e).

Proposition 2.7. If W ∈ eSe− mod is simple, then G∗
e(W ) is simple.

Proof. It suffices to show that Ge(W )(e) is the unique maximal S−submodule of Ge(W ). Let V =
Ge(W ). Then by the previous two lemmas we have

Fe(V/V(e)) ∼= Fe(V ) = Fe(Ge(W )) ∼= W

Thus V/V(e) ̸= 0 so V(e) is a proper submodule of V . Suppose V ′ is another proper S− submodule of
V . We claim Fe(V ′) = eV ′ = 0 and thus V ′ ⊆ V(e) showing V(e) is the unique maximal submodule. If
not, then Fe(V ′) is an eSe submodule of eV = e⊗eSe W ∼= W by Lemma 2.5 and thus equals e⊗eSe W

by simplicity. Therefore
V ′ ⊇ SeV ′ = Se⊗eSe W =: Ge(W ) = V

which contradicts the fact that V ′ is a proper submodule. ■
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Theorem 3
Suppose {Vλ |λ ∈ Λ} is a full set of irreducible S−modules, and let Λ′ = {λ ∈ Λ | eVλ ̸= 0} Then{
eVλ |λ ∈ Λ′} is a full set of distinct irreducibles eSe−modules.

Proof. From Proposition 2.7 we now have a mapG∗
e : eSe−Irr → S−Irr. We claim that Fe(G∗

e(W )) ∼= W

and thus Fe : S − Irr → eSe− Irr is surjective. Indeed we have

Fe(G∗
e(W )) Lemma 2.4=== Fe(Ge(W ))

Lemma 2.5∼= W

For distinctness we need to show injectivity of Fe on
{
Vλ |λ ∈ Λ′}. We claim G∗

e(Fe(V )) = V for
V ∈ S − Irr. We have an S − mod map

β : Ge(Fe(V )) = Se ⊗eSe eV → V

s⊗eSe ev 7→ sev

The image is SeV = V since V is irreducible S−module. Thus the kernel of β must be a maximal
proper submodule of Ge(Fe(V ). But Fe(V ) is irreducible by Lemma 2.2 and thus Proposition 2.7 shows
that the kernel of β must be Ge(Fe(V ))(e). ■

Example 1. The Schur functor S(n, r) − mod → C[Sr] − mod from the Schur algebra S(n, r) to
symmetric groups is a classical example of the above. Consider the weight ω = (1, 1, . . . , 1, 0, . . . , 0)
with r 1’s.
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