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1. Crossed Product Algebras

Definition 1.1. Let G be a group acting on an algebra R over C. The crossed product algebra is
R x C[G] = R® C[qG]

with multiplication given by
(regi'eg)=rlg-r) gy

Given N € R —mod, g € G, consider the new R — mod IN = N as a set with twisted action
ron=gr)-n
Lemma 1.2. IN is simple < N is simple.
Proof. G acts by automorphisms on R so M C N is a submodule <= 9M C9 N is a submodule. H
Thus G acts on the set of simple R—modules.
Definition 1.3. Given N a simple R — mod, the inertia subgroup of N is
In={9€G|'N =N}
For h € Iy, fix an isomorphism ¢y : N —h7! N, then

bgbn = an(g,h)ogn

where an(g,h) € C* by Schur’s Lemma. Since ¢y, is an intertwiner we have ¢pr = h(r)¢y, and this will
show that an(g,h) € H*(Iy,C>).

Definition 1.4 (Twisted Group Algebra). Given o € H?(H,C>), let (CH),-1 be the algebra with
underlying set CH with multiplication given by

cgcn = (g, h) legn
Let L" be a simple (Cly),-1 —mod. Then there is an action of of R x C[Ix] on N ® L" given by
N

(roh)(n®l)=r-¢pn)cp -1

(There’s no typo, we have C[Iy] instead of (CIy), -1 because of double cancellation.)
N

'Equivalently, multiplication is given by concatenation using the commutation relation gr = g(r)g to move all the G
terms to the right.
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Section 1 Cailan Li Crossed Product Algebras

( Theorem 1 (Clifford Theory) )
Let N be a simple R —mod, and L" a simple ((CIN)O(;# —mod. Let
RGM# =Ind 1 (N @ LH)

(a) RGN* is a simple R x G module.

(b) Every simple R x G module is obtained by this construction.

(¢) RGN# = RGN*Y «— Ny, Ny in same G—orbit and L* = L7,
N J
Proof. (a) The key here is notice that the the decomposition of R—modules

RxC i i gxg~!(r)=rg o "
md¢ (NeL')= P (1og)NeL = P “NoL (1)
giGG/IN giEG/IN

shows RG™M* is a ss R—module as N is a simple R—module. Thus any R x G submodule M’ C RGNH
must also be a ss R—module. ss modules are direct sums of their isotypic components and Eq. (1) shows
that all simple submodules of RG™* are of the form YN and thus we see that as R—modules

M = @ 9N ® Hompg(%N,M') = @ 9N ®@ Hompg ("N, M' N g;(N @ L"))
9:€G/IN 9:€G/IN
G—submod ED 9% N ® Hompg(% N, gi(M' 1 (N @ LM)) ) = ED 9% N ® Homgp(N,M' N (N @ L")
g:€G/In 9i€G/IN

Since M’ is a G—submodule, M’ N (N ® L") is a Iy —submodule and thus we have the Iy—submodule
Homp(N, M’ N (N ® L*)) € Homg(N, N @ L*) = L*

But L* is a simple Iy module and thus we have equality and thus M’ = RGN* as desired.
(b) Suppose M is a simple R X G module and let N be any simple R submodule of M. Notice that
M = Z gN since the RHS is a R x G submodule of M. We can then divide the sum as
geG
M= P ¢L=Wd ¢ L  where L= > hN
9:€G/IN hely

L is a sum of isomorphic simple R—modules and thus is semisimple and thus is a direct sum of it’s
isotypic components so we have
L= N ®Hompg(N, L)

One can then check that Homp(N, L) is a simple (Iy)_-1 module.
N
(¢) Given RGN* = RGN*7 since Ny is a R— submodule of the LHS it follows that N; =9 N, for some

g € G. Tt then follows that L* = Hompg(Ny, RGN'H*) = Hompg (9 No, RGN?7)Homp(IN,? Ny @ L7) =
L. ]

Remark. If G acts trivially on R then R x C|G] = R® C[G] and IN = N Vg € G and so Iy = G
and thus the above recovers the fact that all simple R ® C[G] modules are of the form N ® L where
N € Irr(R), L € Irr(G).

Lemma 1.5. Let e = (1/|G)) Z geERxG.
geG
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Section 2 Cailan Li RE simples

(a) We have a ring isomorphism
0:RY = e(Rx Qe
s se
(b) We have an isomorphism of (R x G, R®) bimodules
YR = (RxG)e

r—=re

Proof. (a) Let r € R, then expanding the first e we have
G 1
er = GZQNT_ Z TGR ng re = ere=re (2)
’ ‘ geG geG gEG

And thus 0 actually lands in e(R x G)e. Furthermore by Eq. (2), we see that for r, s € RC, rese = rse
so 0 is a ring homomorphism. If re = se, then since R x G is a free R—module with basis GG, we have
r = s. For surjectivity, like in Eq. (2) for rh € R x G we have the computation

e=eVgeG
h)e = ‘G’ngrhe ‘G‘Zg hg = (’G|Zg )eERGe

geG geqG geq@

1.1. R¢ simples

Lemma 1.6. Let M, N be simple (CH),—modules and ey = Z h. Then
’H| heH
1 ifM=N

dim(eg(M @ N*)) =
(e ) {O otherwise

Let N be a simple R—module. R® acts on N on the left by restriction while (CIx)q, acts on N on the
right by the isomorphisms ¢, : N =" N. Recall ¢p,r = h(r)¢n and thus for r € RY, these two actions
commute and we have a decomposition
N @ No@L) (3)
VE(E);N

where N” € RY — mod and L” € C[Iy]a, — mod.

Theorem 2 (a) If NV # 0 then it’s a simple R® —module.

(b) Every simple RY—module is isomorphic to some NV and they are pairwise nonisomorphic.

Proof. Tt suffices to show eRG™* = N and then (a) follows from Lemma 2.2 while (b) follows from
Theorem 3 we know that all simple RY. First note

eRGMNH = (R x G) @pur (N ® L") = ¢ @ gy (N ® LM
=ceyg QrRxH (N® L‘u) =€ QRxH GH(N(X) LN)
Using the decomposition in Eq. (3) and Lemma 1.6 the result follows. |
Corollary 1.7. N|gc is semisimple.
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2. Idempotent functor

Let S be any k algebra and e € S any idempotent and let F, : S — mod — eSe — mod be defined as
F.(V)=¢eV.

Lemma 2.1. F, is exact.
Proof. eV = Homg(Se, V). [
Lemma 2.2. IfV € S —mod is irreducible, then F.(V') is zero or irreducible.

Proof. Let W C eV be a eSe submodule. First note that W = eSeW = eeSeW = eW. Then
V = SW = SeW since V is an irreducible S—module. Thus

eV =e(SeW) = (eSe)W =W
Thus W has to be an irreducible eSe module if not zero. [ |

Definition 2.3. Let V. be the largest S submodule of V' contained in (1 —e)V.

Lemma 2.4. For V € S —mod, the map 7. : V. — V/V(y induces an isomorphism Fe(m.) : Fe(V) —
Fe(v/‘/(e))'

Proof. F, is exact and thus we have the exact sequence
0= Fe(Vie)) = Fe(V) = Fe(V/V(e)) = 0
But eV(,) Ce(l —e)V =0. [
Let G, : eSe — mod — S — mod be defined as G.(W) = Se ®cse W.
Lemma 2.5. Given W € eSe — mod, we have Fo(G.(W)) = e Qcge W = W.

Proof.

However G, doesn’t always take simples to simples and thus we still don’t know if the map F, : S—Irr —
eSe — Irr is surjective or not. However, consider

Definition 2.6. Let G7 : eSe —mod — S —mod be defined as GL(W) = Ge(W)/Ge(W)(e).
Proposition 2.7. If W € eSe — mod is simple, then G5(W) is simple.

Proof. Tt suffices to show that Ge(W)) is the unique maximal S—submodule of G¢(W). Let V =
G.(W). Then by the previous two lemmas we have

Fe(v/v(e)) = Fe(v> = Fe<Ge(W)) =W

Thus V/V(ey # 0 so V) is a proper submodule of V. Suppose V' is another proper S— submodule of
V. We claim F.(V') = eV’ = 0 and thus V' C V(e) showing V|, is the unique maximal submodule. If
not, then F.(V’) is an eSe submodule of eV = e ®c5. W = W by Lemma 2.5 and thus equals e ®.g. W
by simplicity. Therefore

VD 8eV' = Se®ese W =: Ge(W) =V

which contradicts the fact that V' is a proper submodule. |

4 of 5



Section 2 Cailan Li Idempotent functor

Theorem 3
Suppose {V\ |\ € A} is a full set of irreducible S—modules, and let A" = {\ € A|eV) # 0} Then
{eVA|X € A'} is a full set of distinct irreducibles eSe—modules.

Proof. From Proposition 2.7 we now have a map G : eSe—Irr — S—Irr. We claim that F.(G,(W)) = W
and thus F, : § — Irr — eSe — Irr is surjective. Indeed we have

Lemma 2.5

F(GL(W)) "L B (GoW)) 2

For distinctness we need to show injectivity of F, on {Vy|X € A'}. We claim G;(F.(V)) = V for
V €S —Irr. We have an S — mod map

5 : Ge(Fe(V)) = Se ReSe eV -V

S QeSe €V > S€V

The image is SeV = V since V is irreducible S—module. Thus the kernel of 5 must be a maximal
proper submodule of G¢(Fe(V). But F,(V) is irreducible by Lemma 2.2 and thus Proposition 2.7 shows

that the kernel of 3 must be Ge(Fe(V))(e)- [ |
Example 1. The Schur functor S(n,r) — mod — C[S,] — mod from the Schur algebra S(n,r) to
symmetric groups is a classical example of the above. Consider the weight w = (1,1,...,1,0,...,0)
with r 1’s.
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