Clifford Theory for Crossed Product Algebras

Cailan Li

February 14th, 2024

1. Crossed Product Algebras

Definition 1.1. Let G be a group acting on an algebra R over \mathbb{C} . The crossed product algebra is

$$R \rtimes \mathbb{C}[G] = R \otimes \mathbb{C}[G]$$

with multiplication given by

$$(r \otimes g)(r' \otimes g') = r(g \cdot r') \otimes gg'^{1}$$

Given $N \in R - \text{mod}$, $g \in G$, consider the new $R - \text{mod } {}^gN = N$ as a set with twisted action

$$r \circ n = g^{-1}(r) \cdot n$$

Lemma 1.2. gN is simple \iff N is simple.

Proof. G acts by automorphisms on R so $M \subset N$ is a submodule $\iff {}^gM \subset {}^gN$ is a submodule.

Thus G acts on the set of simple R-modules.

Definition 1.3. Given N a simple R - mod, the inertia subgroup of N is

$$I_N = \{ g \in G | {}^g N \cong N \}$$

For $h \in I_N$, fix an isomorphism $\phi_h : N \to^{h^{-1}} N$, then

$$\phi_g \phi_h = \alpha_N(g, h) \phi_{gh}$$

where $\alpha_N(g,h) \in \mathbb{C}^{\times}$ by Schur's Lemma. Since ϕ_h is an intertwiner we have $\phi_h r = h(r)\phi_h$ and this will show that $\alpha_N(g,h) \in H^2(I_N,\mathbb{C}^{\times})$.

Definition 1.4 (Twisted Group Algebra). Given $\alpha \in H^2(H, \mathbb{C}^{\times})$, let $(\mathbb{C}H)_{\alpha^{-1}}$ be the algebra with underlying set $\mathbb{C}H$ with multiplication given by

$$c_g c_h = \alpha(g, h)^{-1} c_{gh}$$

Let L^{μ} be a simple $(\mathbb{C}I_N)_{\alpha_N^{-1}}$ – mod. Then there is an action of $R \rtimes \mathbb{C}[I_N]$ on $N \otimes L^{\mu}$ given by

$$(r \otimes h)(n \otimes l) = r \cdot \phi_h(n) \otimes c_h \cdot l$$

(There's no typo, we have $\mathbb{C}[I_N]$ instead of $(\mathbb{C}I_N)_{\alpha_N^{-1}}$ because of double cancellation.)

¹Equivalently, multiplication is given by concatenation using the commutation relation gr = g(r)g to move all the G terms to the right.

Theorem 1 (Clifford Theory)

Let N be a simple R - mod, and L^{μ} a simple $(\mathbb{C}I_N)_{\alpha_N^{-1}} - \text{mod}$. Let

$$RG^{N,\mu} = \operatorname{Ind}_{R \rtimes I_N}^{R \rtimes G}(N \otimes L^{\mu})$$

- (a) $RG^{N,\mu}$ is a simple $R \rtimes G$ module.
- (b) Every simple $R \times G$ module is obtained by this construction.
- (c) $RG^{N_1,\mu} \cong RG^{N_2,\gamma} \iff N_1, N_2 \text{ in same } G\text{-orbit and } L^{\mu} \cong L^{\gamma}.$

Proof. (a) The key here is notice that the decomposition of R-modules

$$\operatorname{Ind}_{R\rtimes I_N}^{R\rtimes G}(N\otimes L^{\mu}) = \bigoplus_{g_i\in G/I_N} (1\otimes g_i)N\otimes L^{\mu} \stackrel{g\rtimes g^{-1}(r)=rg}{\cong} \bigoplus_{g_i\in G/I_N} {}^{g_i}N\otimes L^{\mu}$$
(1)

shows $RG^{N,\mu}$ is a ss R-module as N is a simple R-module. Thus any $R \rtimes G$ submodule $M' \subseteq RG^{N,\mu}$ must also be a ss R-module. ss modules are direct sums of their isotypic components and Eq. (1) shows that all simple submodules of $RG^{N,\mu}$ are of the form gN and thus we see that as R-modules

$$M' = \bigoplus_{g_i \in G/I_N} {}^{g_i}N \otimes \operatorname{Hom}_R({}^{g_i}N, M') = \bigoplus_{g_i \in G/I_N} {}^{g_i}N \otimes \operatorname{Hom}_R({}^{g_i}N, M' \cap g_i(N \otimes L^{\mu}))$$

$$\stackrel{G-submod}{=} \bigoplus_{g_i \in G/I_N} {}^{g_i}N \otimes \operatorname{Hom}_R({}^{g_i}N, g_i(M' \cap (N \otimes L^{\mu}))) \cong \bigoplus_{g_i \in G/I_N} {}^{g_i}N \otimes \operatorname{Hom}_R(N, M' \cap (N \otimes L^{\mu}))$$

Since M' is a G-submodule, $M' \cap (N \otimes L^{\mu})$ is a I_N -submodule and thus we have the I_N -submodule

$$\operatorname{Hom}_R(N, M' \cap (N \otimes L^{\mu})) \subset \operatorname{Hom}_R(N, N \otimes L^{\mu}) = L^{\mu}$$

But L^{μ} is a simple I_N module and thus we have equality and thus $M' = RG^{N,\mu}$ as desired.

(b) Suppose M is a simple $R \rtimes G$ module and let N be any simple R submodule of M. Notice that $M = \sum_{g \in G} gN$ since the RHS is a $R \rtimes G$ submodule of M. We can then divide the sum as

$$M = \bigoplus_{g_i \in G/I_N} g_i L = \operatorname{Ind}_{R \rtimes I_N}^{R \rtimes G} L \qquad \text{ where } L = \sum_{h \in I_N} hN$$

L is a sum of isomorphic simple R-modules and thus is semisimple and thus is a direct sum of it's isotypic components so we have

$$L \cong N \otimes \operatorname{Hom}_{R}(N, L)$$

One can then check that $\operatorname{Hom}_R(N,L)$ is a simple $(I_N)_{\alpha_N^{-1}}$ module.

(c) Given $RG^{N_1,\mu} = RG^{N_2,\gamma}$ since N_1 is a R- submodule of the LHS it follows that $N_1 = {}^g N_2$ for some $g \in G$. It then follows that $L^{\mu} = \operatorname{Hom}_R(N_1, RG^{N_1,\mu}) \cong \operatorname{Hom}_R({}^gN_2, RG^{N_2,\gamma}) \operatorname{Hom}_R({}^gN_2, {}^gN_2 \otimes L^{\gamma}) = L^{\gamma}$.

Remark. If G acts trivially on R then $R \rtimes \mathbb{C}[G] = R \otimes \mathbb{C}[G]$ and ${}^gN = N \; \forall g \in G$ and so $I_N = G$ and thus the above recovers the fact that all simple $R \otimes \mathbb{C}[G]$ modules are of the form $N \otimes L$ where $N \in \operatorname{Irr}(R), L \in \operatorname{Irr}(G)$.

Lemma 1.5. Let
$$e = (1/|G|) \sum_{g \in G} g \in R \rtimes G$$
.

(a) We have a ring isomorphism

$$\theta: R^G \xrightarrow{\sim} e(R \rtimes G)e$$
$$s \mapsto se$$

(b) We have an isomorphism of $(R \rtimes G, R^G)$ bimodules

$$\psi: R \xrightarrow{\sim} (R \rtimes G)e$$
$$r \mapsto re$$

Proof. (a) Let $r \in \mathbb{R}^G$, then expanding the first e we have

$$er = \frac{1}{|G|} \sum_{g \in G} g \rtimes r = \frac{1}{|G|} \sum_{g \in G} g(r)g \stackrel{r \in \mathbb{R}^G}{=} \frac{1}{|G|} \sum_{g \in G} rg = re \implies ere = re$$
 (2)

And thus θ actually lands in $e(R \rtimes G)e$. Furthermore by Eq. (2), we see that for $r, s \in R^G$, rese = rse so θ is a ring homomorphism. If re = se, then since $R \rtimes G$ is a free R-module with basis G, we have r = s. For surjectivity, like in Eq. (2) for $rh \in R \rtimes G$ we have the computation

$$e(rh)e = \frac{1}{|G|} \sum_{g \in G} g \rtimes rhe = \frac{1}{|G|} \sum_{g \in G} g(r)ghe \stackrel{ge = e \forall g \in G}{===} \left(\frac{1}{|G|} \sum_{g \in G} g(r)\right) e \in R^G e$$

1.1. R^G simples

Lemma 1.6. Let M, N be simple $(\mathbb{C}H)_{\alpha}$ -modules and $e_H = \frac{1}{|H|} \sum_{h \in H} h$. Then

$$\dim(e_H(M \otimes N^*)) = \begin{cases} 1 & \text{if } M \cong N \\ 0 & \text{otherwise} \end{cases}$$

Let N be a simple R-module. R^G acts on N on the left by restriction while $(\mathbb{C}I_N)_{\alpha_N}$ acts on N on the right by the isomorphisms $\phi_h: N \cong^h N$. Recall $\phi_h r = h(r)\phi_h$ and thus for $r \in R^G$, these two actions commute and we have a decomposition

$$N \cong \bigoplus_{\nu \in (\widehat{I_N})_{\alpha_N}} N^{\nu} \otimes (L^{\nu})^* \tag{3}$$

where $N^{\nu} \in \mathbb{R}^G$ – mod and $L^{\nu} \in \mathbb{C}[I_N]_{\alpha_N}$ – mod.

Theorem 2 (a) If $N^{\nu} \neq 0$ then it's a simple R^G -module.

(b) Every simple R^G -module is isomorphic to some N^{ν} and they are pairwise nonisomorphic.

Proof. It suffices to show $eRG^{N,\mu} \cong N^{\nu}$ and then (a) follows from Lemma 2.2 while (b) follows from Theorem 3 we know that all simple R^G . First note

$$eRG^{N,\mu} := e(R \rtimes G) \otimes_{R \rtimes H} (N \otimes L^{\mu}) \stackrel{eg=g}{=\!\!\!=} e \otimes_{R \rtimes H} (N \otimes L^{\mu})$$
$$= ee_H \otimes_{R \rtimes H} (N \otimes L^{\mu}) = e \otimes_{R \rtimes H} e_H (N \otimes L^{\mu})$$

Using the decomposition in Eq. (3) and Lemma 1.6 the result follows.

Corollary 1.7. $N|_{R^G}$ is semisimple.

2. Idempotent functor

Let S be any k algebra and $e \in S$ any idempotent and let $F_e : S - \text{mod} \to eSe - \text{mod}$ be defined as $F_e(V) = eV$.

Lemma 2.1. F_e is exact.

 $Proof. \ eV \cong Hom_S(Se, V).$

Lemma 2.2. If $V \in S$ – mod is irreducible, then $F_e(V)$ is zero or irreducible.

Proof. Let $W \subset eV$ be a eSe submodule. First note that W = eSeW = eeSeW = eW. Then V = SeW since V is an irreducible S-module. Thus

$$eV = e(SeW) = (eSe)W = W$$

Thus W has to be an irreducible eSe module if not zero.

Definition 2.3. Let $V_{(e)}$ be the largest S submodule of V contained in (1-e)V.

Lemma 2.4. For $V \in S$ – mod, the map $\pi_e : V \to V/V_{(e)}$ induces an isomorphism $F_e(\pi_e) : F_e(V) \to F_e(V/V_{(e)})$.

Proof. F_e is exact and thus we have the exact sequence

$$0 \to F_e(V_{(e)}) \to F_e(V) \to F_e(V/V_{(e)}) \to 0$$

But $eV_{(e)} \subseteq e(1-e)V = 0$.

Let $G_e : eSe - \text{mod} \to S - \text{mod}$ be defined as $G_e(W) = S_e \otimes_{eSe} W$.

Lemma 2.5. Given $W \in eSe - \text{mod}$, we have $F_e(G_e(W)) = e \otimes_{eSe} W \cong W$.

Proof.

$$F_e(G_e(W)) = e(Se \otimes_{eSe}) = eSe \otimes_{eSe} W = e \otimes_{eSe} W \cong W$$

However G_e doesn't always take simples to simples and thus we still don't know if the map $F_e: S-\operatorname{Irr} \to eSe-\operatorname{Irr}$ is surjective or not. However, consider

Definition 2.6. Let $G_e^* : eSe - \text{mod} \to S - \text{mod}$ be defined as $G_e^*(W) = G_e(W)/G_e(W)_{(e)}$.

Proposition 2.7. If $W \in eSe - \text{mod } is simple$, then $G_e^*(W)$ is simple.

Proof. It suffices to show that $G_e(W)_{(e)}$ is the unique maximal S-submodule of $G_e(W)$. Let $V = G_e(W)$. Then by the previous two lemmas we have

$$F_e(V/V_{(e)}) \cong F_e(V) = F_e(G_e(W)) \cong W$$

Thus $V/V_{(e)} \neq 0$ so $V_{(e)}$ is a proper submodule of V. Suppose V' is another proper S- submodule of V. We claim $F_e(V') = eV' = 0$ and thus $V' \subseteq V_{(e)}$ showing $V_{(e)}$ is the unique maximal submodule. If not, then $F_e(V')$ is an eSe submodule of $eV = e \otimes_{eSe} W \cong W$ by Lemma 2.5 and thus equals $e \otimes_{eSe} W$ by simplicity. Therefore

$$V' \supset SeV' = Se \otimes_{eSe} W =: G_e(W) = V$$

which contradicts the fact that V' is a proper submodule.

Theorem 3

Suppose $\{V_{\lambda} \mid \lambda \in \Lambda\}$ is a full set of irreducible S-modules, and let $\Lambda' = \{\lambda \in \Lambda \mid eV_{\lambda} \neq 0\}$ Then $\{eV_{\lambda} \mid \lambda \in \Lambda'\}$ is a full set of distinct irreducibles eSe-modules.

Proof. From Proposition 2.7 we now have a map $G_e^*: eSe-\operatorname{Irr} \to S-\operatorname{Irr}$. We claim that $F_e(G_e^*(W)) \cong W$ and thus $F_e: S-\operatorname{Irr} \to eSe-\operatorname{Irr}$ is surjective. Indeed we have

$$F_e(G_e^*(W)) \stackrel{Lemma}{=} {}^{2.4} F_e(G_e(W)) \stackrel{Lemma}{\cong} {}^{2.5} W$$

For distinctness we need to show injectivity of F_e on $\{V_\lambda | \lambda \in \Lambda'\}$. We claim $G_e^*(F_e(V)) = V$ for $V \in S$ – Irr. We have an S – mod map

$$\beta: G_e(F_e(V)) = S_e \otimes_{eSe} eV \to V$$
$$s \otimes_{eSe} ev \mapsto sev$$

The image is SeV = V since V is irreducible S-module. Thus the kernel of β must be a maximal proper submodule of $G_e(F_e(V))$. But $F_e(V)$ is irreducible by Lemma 2.2 and thus Proposition 2.7 shows that the kernel of β must be $G_e(F_e(V))_{(e)}$.

Example 1. The Schur functor $S(n,r) - \text{mod} \to \mathbb{C}[S_r] - \text{mod}$ from the Schur algebra S(n,r) to symmetric groups is a classical example of the above. Consider the weight $\omega = (1, 1, \dots, 1, 0, \dots, 0)$ with r 1's.